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ABSTRACT

The rocket trajectory simulation programs in use at the Physical Science

Laboratory of New Mexico State University are described. The purpose and

methods of use of the programs are discussed, the theory is outlined, and the

equations are listed in summary form.
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THETRAJECTORYSIMULATIONPROGRAMS
OFPSL/NMSU

i. Purpose of the Programs

1.1 The trajectory simulation programs now in use by the Physical Science

Laboratory of New Mexico State University are designed to simulate multl-stage,

unguided rocket trajectories from launch to impact. The programs were designed

to supplement each other to furnish data for the following general objectives:

(a) Investigate performance characteristics such as peak altitude

and range to impact for a given rocket configuration as func-

tions of launch angle and payload.

(b) Obtain the necessary tables for use in computing corrections

to launcher setting to compensate for wind effects.

(c) Compute estimates of impact dispersion.

1'2 A trajectory simulation program is a special case of the time domain

solution, by iteratlve methods, of a set of ordinary differential equations

starting with given initial conditions.

From the digital computer programmer's point of view, a "rocket" is

a set of n differential equations, which can be written

xl = fi (xj, t) i,j:(1, 2, . . .,n) 1-1

and for which a set of initial conditions Xlo , to are known. The functions
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fi are, in general, non-linear and in fact contain functional relationships

which are expressed only in tabular form. For equations of this type, it is

impossible to write a closed form solution of 1-1. That is, it is impossible

to find functions _i such that

xi (t) = _i (Xjo, to)" 1-2

If the functions fi are such that xi can be expressed by a Taylor's

series expansion about to, the equations (l-l) can be integrated by a numer-

ical technique over a small integration interval _t. If _t is chosen small

enough, xi (t o + _t) can be evaluated to any desired accuracy. The particu-

lar method used in the PSL trajectory program is given in 2.1 and is derived

in Reference 1.

The output values of the first step integration program, xi (to + _t),

(to + _t) are used for initial conditions to compute the next point, and so on.

Use of this method means that computationof impact coordinates for

a given set of initial conditions will require the step-by-step integration

of the entire trajectory from launch to impact. Each change in initial con-

ditions, and each change in the functional description of the rocket will

require a complete new trajectory computation.

Since this process is extremely time consuming, every possible means

is used to shorten the computations.

1.! The use of several programs is motivated by the fact that each pro-

gram, when designed for a specific purpose, is more efficient than a single

general purpose program would be.

2



Five programs are in use :

Program

i

2

3

4

5

1.3.1

1.3.2

Two-Dimensional Particle Trajectory

Two-Dimensional Rigid Body Standard Trajectory

Two-Dimensional Rigid Body with Wind Trajectory

Two-Dimenslonal Rigid Body with Malalignments Trajectory

Three-Dimensional Particle with Curved Earth Trajectory

All five programs have certain features in common, including:

(a) Tables and equations for thrust, mass and drag.

(b) Atmospheric data.

(c) Table look-up routine.

(d) Integration routine.

(e) Time interval control, and discontinuity check.

These features are discussed in Section 2.

The limitations common to all five programs are:

(a) Wind effects and dispersion terms can be computed only

in the pitch plane. The effects normal to the flight

path, which are variously termed yaw effects, heading

effects or cross-range effects, must be estimated from

the pitch plane data.

(b) Coupling effects in yaw and pitch caused by roll cannot

be computed.

(c) Aerodynamic terms are limited to linearized coefficients.

(d) Gyroscopic effects caused by missile roll cannot be

computed.

3



i.___ The Two-Dimensional Particle Trajectory Program was designed to ob-

tain rocket performance characteristics as functions of launch angle and

payload. It can also be used to compute performance (altitude and range)

variations caused by

(a) Thrust variation, expressed as a percentage of normal thrust

vs. time.

(b) Drag variation, expressed as a percentage variation of the

drag coefficient as a function of Mach Number.

(c) Second stage ignition time variation, or interstage delay

time.

1.4.1 The particle trajectory equations constrain the thrust and

drag forces to act along the velocity vector. Tae equations can also be des-

cribed as "zero angle of attack", "infinite stability", or "zero inertia"

equations. The equations cannot describe:

(a) Wind effects

(b) Aerodynamic or thrust malalignment effects

(c) Vehicle response lag to any change of conditions.

The response lag limitation causes the trajectory description to be inaccurate

for zero-length or low velocity launches. If the launch velocity is relatively

high (over 150 ft/sec.) the trajectories as computed correspond very closely

to those obtained from the rigid body equations with no perturbations. The

particle trajectory is used for overall performance evaluation, wherever

posslble, because of:

(a) Much greater speed of computing,

(b) Relative simplicity of set-up for computation.



The force equations contain:

(a) Gravitational force directed parallel to the vertical

(z) coordinate and varying inversely as the square of

the distance from the earth's center.

(b) Thrust force, acting along the velocity vector.

(c) Drag force, acting opposite to the velocity vector.

to:

Two-Dimensional Rigid Body Standard Trajectory Program was designed

(a) Provide performance and performance variation data when response

lag characteristics do not allow the Particle TraJectory Program

to be used.

(b) Provide a standard for computing performance variation when

perturbations are introduced in the other rigid body programs.

For example, the difference between impact range for a given

launch angle and a specified wind, as computed by Program 3,

and the impact range for the same rocket at the same launch

angle, as computed by this program, gives the impact displace-

ment due to the specified wind. The equations and tables of

this program are the same as those of the other two, except for

the terms for wind effects in Program 3 and the terms for mal-

alignment effects in Program 4.

(c) Compute performance variation and dispersion caused by varia-

tions in pitch angle and pitch angular velocities at the

instant of separation from the l_mcher. The variations are

usually called "tlp-off".



1.5.___!IThe forces and moments acting on the rocket are:

(a) Gravitational force as used in Program I.

(b) Thrust vector magnitude as used in Program l, acting

along the longitudinal axis of the rocket.

(c) Drag force as used in Program i.

(d) Lift force, acting normal to the drag force, and pro-

portional to the sine of twice the angle of attack.

(e) Aerodynamic restoring moment produced by the resultant

of lift and drag forces, acting at the center of pressure.

(f) Aerodynamic damping moment.

(g) Jet damping moment.

1.6

to compute :

(a)

The Two-Dimensional Rigid Body with Wind Trajectory was designed

Effect on range of a uniform wind acting on the rocket from

launch altitude to an altitude of negligible wind effect. Range

effect of a unit wind is called the unit wind effect, and is

considered to be a function of launch angle.

(b) Wind weighting function "f" as a function of altitude.

(c) Effect on the trajectory of any wind condition which can be

represented as a tabular function of altitude.

1.6.1 The equations for forces and moments acting on the rocket are

the same as those of Program 2, except:

(a) Drag force acts in the direction of the relative velocity

vector, which is the velocity vector of the rocket rela-

tive to the moving air.

(b) Lift force is normal to the relative velocity vector.
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1.7 The Two-Dimensional Rigid Body with Malalignments Trajectory Program

was designed to provide:

(a) Computation of the effect on the trajectory of a thrust mal-

alignment on each stage independently.

(b) Computation of the effect on the trajectory of a fin malalign-

ment on each _tage _n_ep_ndently.

1.7.1 In a two-dimensional program, malalignment effects are com-

puted in the pitch plane only.

The equations compute this effect by:

(a) Integrating the roll rate and adding an initial roll

angle to obtain roll angle.

(b) Multiplying the malalignment forces and moments by the

sine of the roll angle to obtain the pitch plane com-

ponent of the forces and moments.

1.7.2 The equations for forces and moments are the same as in Pro-

gram 2, with the addition of:

(a) A thrust malalignment force component, acting normal to

the rocket longitudinal axis; equal to the thrust force,

as used in Programs 1 through 3, multiplied by the sine

of a malalignment angle and by the sine of the roll

angle.

(b) A thrust malalignment moment, obtained by multiplying

the thrust malalignment force by the distance from the

rocket center of mass to the rocket motor throat.

(c) A fin malalignment force component, acting normal to the

relative velocity vector; equal to the fin llft caused
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(d)

by the malalignment angle, multiplied by the sine of the

roll angle.

A fin malalignment moment, obtained by multiplying the

fin malalignment force by the cosine of the angle of

attack, to obtain the component normal to the rocket

axis, then multiplying by the distance from the rocket

center of mass to the center of pressure of the fins.

1.8 The calculations using the rigid body equations take much more time

than those using the particle equations. The equations are more complex, and

a shorter integration step interval must be used. Where the particle equation

computation may be stable and sufficiently accurate with an interval of one

second_ the rigid body equation computations require integration intervals as

small as .01 or .02 seconds to maintain stability and accuracy.

To save t_e, in Programs 2, 3_ and 4, when the rocket oscillations

damp out so that the angle of attack is negligible 3 the equations are auto-

matically changed from rigid body equations to particle equations.

1.9 In Programs 1 through 4, the motion can be computed by a closed form

solution when the rocket is in vacuum (above 300,000 feet) and has no thrust.

The only force in this case is an inverse square gravity. The two points com-

puted in this manner are peak and atmospheric re-entry at 300,000 feet on the

descent. The closed form solution is optional and is used for time saving

when detailed trajectory above 300,000 feet is not wanted.

1.10 The Three-Dimensional Particle Trajectory with Curved Earth Program

contains equations for description of:
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(a) The earth's surface, which is described as an ellipsoid of revol-

ution.

(b) The earth's gravitational field which _s described by an ex-

pansion in terms of zonal harmonics up to the sixth harmonic.

(c) The effects of the earth's rotation; the Coriolis and centrl-

Tesseral harmonics (variations with longitude) and the effects of

local irregularities of the earth's surface are not included in the equations.

For this reason the gravitational force as computed for any specific point on

the earth's surface may not agree exactly with the force as measured at that

point.

1.10.1 The Curved Earth Program was designed to provide:

(a) Impact displacement caused by Coriolls force effects.

(b) Height above the earth's surface 3 rather than a Car-

tesian vertical coordinate with respect to the launcher.

(c) Impact locations on the curved earth surface, rather

than on a Cartesian plane tangent to the earth at the

launcher.

(d) An accurate description of long range free flight rocket

trajectories.

1.10.2 The force equations contain:

(a) Gravitational and rotational forces as discussed in 1.10

above.

(b) Thrust force_ acting along the velocity vector in three

dimensions.

(c) Drag force3 acting opposite to the velocity vector.
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2. The General Program

The five programs under discussion are special cases of a general trajec-

tory program. The rocket equations in each of the five are used as sub-routines

for the general program. The efficiency and utility of any trajectory simulation

are established by the logic of the general program; and the programming of this

logic is the most critical task in writing a simulation program.

The major components of the general program are described below.

2.1 The integration routine used is the Runge-Kutta fourth order method*

in which, given a set of n differential equations

xi = fi (xj, t) i, j = i, 2 3 3, • • ., n

with the initial conditions

to, Xio,

the solution at the end of a time interval _t is computed by the equations

kll-- At fi (Xjo, to)

_t fi [(Xjo + 1/2 kjl), (to + 1/2 At)lki2 =

*Reference 1.
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xi (t o + At) = Xio + (1/6)(kil + _ki2 + 2ki3 + ki4 ).

2.___2The integration routine has a provision for testing to find whether

the At used is adequate. This test is made every q iterations, where q is

a constant %uhich c_--ube set in advance. The test is as follows:

(a) The interval At is cut in half, two iterations are computed

and the results stored.

(b) The interval At is restored to its original value, one itera-

tion is computed with the original starting time, and the results

stored.

(c) For each variable xi being integrated, the value obtained from

(a) is subtracted from the value obtained in (b), and the dif-

ference divided by the value obtained in (a).

(d) Each quotient so obtained is the relative error in the xl, due

to use of the time interval At. Each quotient is compared

against a tolerance T, and if any quotient is greater than T_

the time interval for integration is set at At/2, and the pro-

gram proceeds. The tolerance T is a constant of the program

which can be set in advance.

(e) If all quotients obtained in (c) are less than T, another itera-

tion is performed using the time interval At, and the results

stored.

(f) The time interval is set at 2At, and one iteration with the

original initial condition is performed and the results stored.
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(g) For each variable xi, a relative error is obtained between the

values obtained in (e) and those obtained in (f), and each of

these errors comparedto T.

(h) If any relative error is greater than T, the time interval is

set at _t, and the program proceeds.

(1) If no relative error is greater than T, the time interval is

set at 2 At and the program proceeds.

The preceding computation is necessary to insure the time interval

used will not be too small for efficient computer use, and not too large for

stability and accuracy.

2.___BThe time discontinuity control in the general program is governed by

a table of times of functional discontinuities including

(1) Stage separations

(2) Rocket motor burnouts and ignitions

(3) Abrupt changes in slope of the thrust curve

(4) Payload separations.

All time function tables contain double values at discontinuities. Before

each integration step_ the program tests whether the integration interval will

contain a discontinuity time. If not, the program proceeds_ using the same

At. If the interval contains a discontinuity, At is reduced to a value which

makes the end of the interval coincide with the discontinuity. The first set

of the double tabular values are used to compute the function values at the

end of the interval.

For the next computation after a discontinuity the time interval is

automatically reset to a programmed value and the second set of the double tabu-

lar values are used to compute the function values at the start of the interval.
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The program also automatically selects the appropriate rocket func-

tion tables to use after each discontinuity.

2.4 The altitude discontinuity control in the general program includes

a table of altitudes of functional discontinuities including

(i) Launcher exit

(2) Wind strata boundaries

(3) Atmosphere boundary (300,000 feet)

(4)  pact.

At the end of each integration step, the program tests whether the

integration has included an altitude discontinuity. If not, the program

proceeds. If so, linear interpolation of time vs. altitude is performed to

obtain a new value of _t, and the integration step repeated. Since time

vs. altitude is generally not linear, the recomputed altitude will not fall

exactly on the discontinuity. The process of testing, interpolation and re-

computing is repeated until the altitude at the end of the interval is within

a small preset tolerance limit of the discontinuity.

on the nature of the discontinuity.

(1)

The action taken depends

At launcher exit, the rocket equations of motion are changed

from launcher-constrained to free-flight equations.

At wind strata boundaries, the wind function values are changed.

At atmospheric exit, the equations are changed to those for

motion in a vacuum; and at re-entry, they are changed back.

14



(4) At impact the program halts, initial conditions for the next

trajectory are established and the program started.

2.5 The general program contains a table look-up routine and storage for

all tabular values of rocket functions. The format for tables is the same for

all programs. The table look-up is a linear interpolation.

The _Imctions of time (thrust_ mass_ center of gravity and moment

of inertia) are tabulated sequentially for the entire trajectory, with double

entries for discontinuities.

The table containing thrust vs. time is a multiple entry table, list-

ing in separate columns:

(a) sea level thrust

(b) exit nozzle area (zero when thrust is zero)

(c) time of next discontinuity

(d) code number (1 through 4) to indicate which aerodynamic tables

are applicable.

The aerodynamic tables are functions of Mach Number and include aero-

dynamic coefficients, reference areas, and centers of pressure. Each table is

a multiple entry table, containing four sets of values of the dependent vari-

able. Each set of values applies to one phase of the rocket trajectory. For

example, for a two stage rocket three sets are used--boost phase, second stage

coast and second stage burning. Selection of the phase is a time function,

controlled by the code number in the thrust table.

Atmospheric functions are tabulated vs. altitude. The functions,

speed of sound and atmospheric pressure, are condensed from Tables IV-A and

IV-D of Reference 2.
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S. Employment of the Programs

The programs are used for obtaining a performance evaluation, wind func-

tions, and/or dispersion analysis.

3.1 Performance evaluation is the basic use of Programs i, 2, and 5,

and can be used to:

(a) Study feasibility of rocket design.

(b) Test sensitivity of performance to changes in configuration.

(c) Provide parameters for other studies including heat transfer

and instrumentation environment.

(d) Provide a standard for wind and dispersion studies.

(e) Provide knowledge of the probable flight path of a rocket.

For performance evaluation Program 13 which requires a small number

of input parameters and less computation time, is the most economical. Pro-

gram 2, however, provides rigid body data and more performance characteristics

if valid input is available. Program 2 must be used initially if launch is

from a zero-length launcher.

The performance of a particular rocket is considered a function of

its payload, launch angle and flight time, and is characterized by parameters

including range, altitude and velocity. A description of a rocket:s perfor-

mance is obtained by choosing values of these parameters at selected flight

events (burnout, peak, impact, etc.) for various launch angles and payloads.
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The performance characteristics are converted to the proper units and

tabulated against suitable variables. Common performance tables are: Range

to Impact vs. Launch Angle and Range to Impact vs. Payload.

3.__2 The wind functions, wind weighting function and unit wind effect,

are obtained from Programs 2 and 3.

The wind weighting function, f (z), is obtained by computing trajec-

tories (Program 3) through wind layers of increasing height, Zw, up to a

limit of usually i00,000 feet altitude. A constant wind, Vw, acts within

each layer. The computing technique does not run all the wind layer trajec-

tories from launch, since this would be costly duplication of segments of

trajectories. The trajectory is computed to the top of the first wind layer

and initial conditions are stored, then the trajectory is computed to impact.

The computer then takes the stored initial conditions and computes to the

top of the next layer, stores new initial conditions and computes to impact.

The process iterates until the last wind layer top is reached. The resulting

impact ranges are compared to the Program 2 impact range and a wind weight

value is calculated for each wind layer helghth after corrections for drift.

Wind Weighting Function (f (z)) =

Displacement of impact due to wind to alt. z

Displacement of impact due to wind to alt. lO0,O00 ft.

Experience has shown the wind weighting function to be nearly inde-

pendent of launch angle and payload, so usually one set of wind layer trajec-

tories at a nominal launch angle and payload _rill be sufficient for each

rocket.
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The unit wind effect_ 8(9), is obtained by computing trajectories

(Program 3) with wind to maximum altitude (usually lO0,O00 feet) over a

range of launch angles, and comparing impacts obtained with those from Pro-

gram 2.

S(@) = (Range to impact with unit wind to maximum altitude)

- (Range to impact with n__owind).

The unit wind effect varies with payload, making it necessary to

compute S(@) for at least the maximum, mlnimum, and nominal payloads.

Actual wind profiles can also be used in Program 3 to obtain impact

predictions and study rocket response to high velocity wind and wind shears.

3.3 The dispersion of unguided rockets due to atmospheric effects and

deviations from design criteria is estimated using Programs l, 2, 3 and 4.

The perturbing influences are listed below in "rough order" of decreasing

effect:

(a) Thrust malalignment on each stage

(b) Wind uncertainty

(c) "Tip-off" (initial pitch rate at separation from tower)

(d) Launch angle uncertainty

(e) Second stage ignition time variation

(f) Thrust variation

(g) Drag variation

(h) Payload uncertainty

(i) Fin malalignment on each stage.

19



The tabulated factors make the largest contributions to dispersion.

Perturbations caused by center of thrust, coefficient of lift, and center of

pressure variations have small effect on the trajectory and are not usually

considered in dispersion studies.

Each dispersion factor is varied independently. The unit range ef-

fect due to each factor is multiplied by the estimated probable deviation to

give estimated dispersion. Two estimated dispersion tabulations are derived,

one for range and one for cross-range. Where the perturbation is known to

have cross-range effect, the magnitude is assumed equal to the range effect.

The total dispersion is calculated for range and cross-range by

finding the square root of the sum of the squares of the estimated disper-

sions.

3.4 The operational flow insuring the most economical route to obtain-

ing the desired performance evaluation, wind functions, and/or dispersion

analysis is shown in Appendix III.

Three basic tasks must be completed before any simulation computation

can begin:

(a)

2O

The simulation plan, which outlines the number and types of

computer simulations necessary for the planned operation, must

be approved by the client.

(b) The client must supply the input parameters necessary for the

operation or approve applicable parameters that PSL has avail-

able. A list of required input parameters and tables is included

in Appendix II.

(c) The client must supply the estimated probable deviation (3_

values) of the dispersion factors.



4. Force and Moment Equations

The vector and matrix notation used throughout the balance of thls report

is defined in Section 9.

4.1 Newton's Second Law applied to a rigid body is

dt

M Mass of the body

Velocity of the body in an inertial coordinate system

Sum of the external forces :_cting on the body, resolved

in the same inertial system.

If the reaction effect of the rocket motor is written as one of the

forces, equation (4-1_ as applied to a rocket is*

MG

Inertial acceleration of the rocket

Gravitational force

4-2

T Thrust or reaction force

*Reference 3, Chapter I.
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A Aerodynamic force

If gi is a ground fixed system and Icij] is the transformation matrix

between the inertial system and gi,

as defined in 9.2.3. From (9-_6_ with _i = 0_ the acceleration in the ground

system is

C

[]._m g = cij _m I - 2_g x Rmg x _g x _g x cij Rml

= ci ml+ 5+ C

Angular,velocity of the earth

Coriolis acceleration

C Centrifugal acceleration

_g = -2_g x _m g

_g:-:gx _gx [clj]_mI.

Substituting (_-2) into (4-3) yields

• []= i cij (_G i+ _I+ _I)+ _g + _g

M

_.2 Equation (_-_) is the form of the force equation used in the particle

trajectory programs. The ground fixed coordinate system used is the _i system

defined in 8.6. Equation (4-h) becomes

22



Rm = _ 4-5

With the particle assumption of zero angle of attack:

_: ITl_mz 4-6

_=-{A{ "_m"_. 4-7

"_ % _m _As defined in 9.1.3 rm is the unit vector in the direction of .

The magnitude ITI is discussed in Section 5 and the magnitude IAI in Section 6.

The vectors 3, C 3 _ are lumped into an earth force vector, _ _

-_ _ _ + _,lE = _ + 4-8

In Programs 1 through 4,

go

= R°+__ _3

Net acceleration due to G + C, on a stationary particle

at the launcher

4-9

R o Geocentric radius vector to the launcher

Zm_ Height of rocket above launcher (paragraph 9.1.2).

The vector _ for Program 5 is derived in Section 7.

4._!3

a body fixed coordinate system b i (Figure 4-i).

coordinates to the _ coordinates is

In the rigid body trajectoryequations, the forces are resolved in

The equation relating body

4-10
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The velocity relationship is

"_b

which can be written

A vector_ b is defined:

l mZ[ai j = Rm + _b x
J

_b = [aij I _m "_'. 4-11

_b is the launcher system velocity vector rotated into the body system. It is

not the body system velocity _b . However, it is a perfectly legitimate vector 3

expressed in the body system, and its components can be differentiated in the bi

system. From (9-18) and (9-38)

Using(4-11)

From (4-5) and (4-10)

_b= [aij] _Y + [_iJl _m _

+ R m •
= [aiJl _ [_i b] [aiJ] "'_

4-12

4-13

[ aij] _m_ = M_ (_b + _b) + _b 4-14

This is the equation to be used in computation, The forces will be

resolved into components in the body system; qbcomputed by equation (4-15) and
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integrated once to find Sb; Sb rotated to obtain R m and integrated to obtain

Rm •

This system is convenient because _b is the velocity used in aero-

dynamic calculations. Computation of _b and _b are given in Sections 5 and 6.

_b is

and _ is given by (4-9).

4.__4 The relative orientation of the b i axis and _i axes are shown in

Figure 4-1 with an outline of the rocket superimposed.

FIGURE 4-1
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The b i system has:

Origin

b 1

t3

at the rocket center of gravity (c.g.)

along the longitudinal axis of the rocket

normal to b I in the pitch plane•

The transformation of a vector between _i and bi is

4-16

The rocket is considered to be constrained to move in the b I b3-plane ,

which is coincident with the _l _3-P lane'

directions are defined to be zero.

4.__5

Force components in the b 2 or_ 2

The moment equation for a two-dimensional rigid body reduces to a

scalar equation

12 _2 + I2 w2 = _M 2. 4-17

12 Body moment of inertia about the b 2 axis and is discussed

in 5.4.

_2 Angular velocity of rotation about the b 2 axis and is

equal to _ .

M 2 Sum of the moments about the b 2 axis•

The moments due to thrust are discussed in Section 5 and those due to

aerodynamics in Section 6.

The moment equation is used in the form

,0

B : ! (EM2- i2B). 4-18
I2
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5. Rocket Functions

5-i The thrust force magnitude is defined as*

ITI = T s (t) + A E (Ps - PA) 5-1

where T s (t) is the sea level thrust of the rocket motor vs. time. The term

A E (Ps - PA (h)) is a pressure differential correction. AE is the rocket exit

nozzle area. PA (h) is the ambient pressure, the atmospheric pressure at the

rocket altitude h; PS is sea level standard atmospheric pressure.

The form of the thrust vector equation used in the particle trajectory

equations is given in (4-6)

_ = ITI rm . 5-6

The thrust vector equations used in the rigid body Programs 2 and 3 is

and in Program 4 the malaligned thrust vector is

---- "% __
_b ITI (% cos_ + b 2 sln, cos _ + b 3 sin _ sin _).

Figure 5-1 shows the geometry of the malaligned thrust. The thrust vector T

acts, at the center of the rocket motor exit plane, on the b I axis a distance

..% _% ._%

RT from the c.g. The angle between T and b I is c, and the plane containing T

*Reference 3, P. i0.
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rotates around b I as the rocket rolls. The roll angle _ is defined as the

angle between the b I b2-plane and the plane containing T. Since _ is very

small and the b2 component of T is neglected because of the two-dimensional

constraint, (5-2) is used in Frogram 4 in the form

T_b = ITI (_l +_ sin _ b_) 5-3

r" -- ___b- .......

_.ua um

t

I i

b3

b2

I ''> b!

FIGURE 5-1

with E expressed in radians. The moment due to thrust is

_T b = _Tbx _'b. 5-4

The vector _T b is

_T b = -R T bl • 5-5
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Using (5-5) and (5-3), (5-4) reduces to

_b = ITI_ sin _ b-_2. 5-6

5.2 The thrust force and moment defined above is the reaction force for

a non-pitchlng rocket. Another force and the resulting moment, termed jet

damplna, are caused by the reaction effect if the rocket is pitching. Figure

5-2 illustrates the effect. If the rocket had no pitch angular velocity, the

Jet gases would have a velocity vector V E with respect to the rocket, with

-% ..%

VE=-IVElbl

and the resulting reaction force would be

--% _%

FR =-M IVEI b i"

is the mass rate of flow, taken negative.

angular velocity _ , the exhaust velocity is

_% ..% -_

V E , = VE + _ RT b 3

If the rocket is pitching with an

and the reaction force is

--% _%

F R, =-M (IVEI bl - _ RT _3).

.-k .._ _%

The component of F R, in the bI direction is included in the T vector already

..%

considered, and the component in the b 3 direction is the reaction due to Jet

damping. The moment due to Jet damping is

Mj : _ x _ bS)

:Q,8 (_)2 '-= b 2 • 5-7
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b 3

FIGURE 5-2

The last term in equation (4-18) is sometimes included in the Jet

damping equation*.

5-3 The mass function of the rocket has two types of variation; mass de-

crease due to motor burning, and mass discontinuities due to stage separation

and payload ejection. The mass decrease due to motor burning is set up as

follows:

The data available is:

MI Mass of rocket at motor ignition tI

MB Mass of rocket at motor burnout tb

W s
Sea level thrust vs. time

Assuming that the mass flow rate is proportional to thrust:

= kT s

*Reference 3, PP. _9-23.

tb

I
tb

dt = -k I T s dt = -J.
tI

5-8
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J Total impulse

k = MI - MB
J

then

t

M (t)=MI- _
t I

l_I dt

t

= MI + k I Ts dt.
tI

5-9

5.4 The center of mass of the rocket is computed from the relationship

c.g.l, 2 =
MI (c.g.l) + M2 (e.g.2)

MI
5-10

for any two components of the rocket

Mass of each component

c.g. i Center of gravity of ith component (i = I, 2)

c.g.l, 2 Center of gravity of the combination.

fro_l

The moments of inertia are computed by the parallel axis theorem

If, 2 = MI (c.g- 1 - c.g.l,2) 2 + M2 (c.g. 2 - c.g.l,2) 2 + I1 + 12 5-i1

Tr_sverse moment of inertia of each component Bout its

c.g.

I1,2
Transverse moment of inertia of the combination about

c.g.1, 2 •
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Data usually furnished for each stage are:

(a) Ts vs. time

(b) Mass with no fuel or payload

(c) Fuel mass

(d) Dimensions

(e) Payload mass.

The mass_ c.g. and I data vs. time for each stage are computed using

equations (5-9)j (5-10) and (5-11), with the empty vehicle as component l, and the

fuel as component 2. The time is referenced to ignition time, and the c.g.

location to the motor exit plane.

The stage data are combined, two at a time, using first stage ignition

time as reference. The resulting single table of Ts, M, c.g. and I vs. time

from first stage ignition is used in the simulation program.
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6. Aerodynamic Forces

I Tiring_.nd l.ift

The Drag and Lift force vectors, D and L, are defined in a relative

wind axis system, which in two dimensions is (Wl, w3). The axis w1 is dir-

ected along the vector

VR

V R =V - W

Velocity of the rocket relative to the moving air mass

6-1

V Velocity of the rocket relative to the earth

..b

W Wind velocity relative to the earth.

The axis w 3 is normal to w I in a right handed sense, and lies in the

plane defined by wI and b 1. The angle between b I and wI is the angle of

attack a .

6-2

In two dimensions, the transformation of any vector A from wind axes

to body axes is

[R21o I w
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Figure 6-1 shows the "_i, bi and w i axes, with the _ and _ vectors.

The drag force is

IDI_ _2 cD

z%

q = y/2PAm=

6-4

6-5

771 = VR/V 0

Dynamic pressure

Z Ratio of specific heats for air (1.414)

PA Atmospheric pressure as a function of altitude

771 Mach number

V S

d 2

Speed of sound as a function of altitude

Reference area of the rocket

CD Drag coefficient.

The lift force is

_-l_.i w3

ILl--qd2m,-

CL = CLC sin a cos _ .
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CL Lift coefficient with no fin malalignment

CL a Derivative of the lift coefficient with respect to a

evaluated at a = O.

In the programs under discussion CD and CL _ are functions of mach

nlmber only_ and are obtained from tabular fSanctions

C D : CD ('Tn).

cL = cna

.-_ .rob

L and D act at the center of pressure location (c.p.)

c.p.= c.p.

6.__2 In the particle trajectories e is defined to be zero_ the wind

axes w i coincide with b i and CL is zero. The aerodynamic force is

=-IDI b_l

A = -qd 2 C D r M . 6-8

In Programs 2 and 3 the lift and drag equation is

A = _b + _b = _qd 2 ((CD cosa - CLa sin 2 a cos a ) b 1

+ (CD sine + CLa sina cos 2 a ) b%). 6-9

The lift force due to fin malalignment is considered to be independent

of the rocket angle of attack and equal to

_FMW= -ILFI (% sin _ + w 2 cos _). 6-10
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is the rocket roll angle as defined in 5.1.

The rocket is considered to be constrained to move in the bl, b 3-

plane and (6-10) simplifies to

-_ W -_

LFM = -L F sin _ w 3

IL=I = qd 2 CL.= _=

6-11

6-12

CLaF The derivative with respect to a of the lift coefficient

of the fins alone

8 F The angle of malalignment of the fins.

In Program 4 the lift and drag equation is

6._/3

A = b + b + LFM b

=-qd 2 ((CDCOSa - (CLa sina cosa + CLa F _F sin _) sina) b_l

+ (CDsina + (CLa sina cosa + CLa F 8 F sin _) coma ) _3).

6-13

The moment due to lift and drag in Programs 2 and 3

- b  pbx( b+ bML_ D =

 pb:IR 1%

6-14

Rp = c.g. - c.p.

c.g.(t) Center of gravity distance from motor exit plane

c.p.(77]) Static center of pressure distance from exit plane.
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In Program _3 the additional moment due to fin malalignment is

6-15

RpF= c.g. - c.p.f.

c .p.f. Center of pressure of fins.

6.4 In addition to the lift and drag forces and moments, which are func-

tions of angle of attack, a pitching rocket experiences a pitch damping moment.

Figure 6-2 illustrates the situation for a rocket with relative velocity V_R,

angle of attack a and pitch rate _ . The center of pressure of the tail is

at -x T from the c.g. and is moving in the b 3 direction with a velocity XT_ ,

so that the tall "sees" an angle of attack which is approximated by

XT_
a T =a + VR

The lift force on the tail is

T b XTb _ (a) qd2cLaTL T = _
VR

The second term on the right is a lift due to pitch rate.

surface contribution to moment due to pitch rate is

Similarly, the nose contribution to moment due to pitch rate is

_T :-q d2CL.NxN2_ b_.
'R

38
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produce

The contributions of all aerodynamic elements can be summed to

6-16

In Programs 2, 3, and 4, _ is computed by

. _
_B _2 .. 2 _ m __ 6-17

-_ _T _LaT V R -2- •

The assumption that pitch damping moment, _ _ is entirely caused by the tall

surfaces is Justified for fin stabilized rockets with large stability margins.
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7- Earth Forces

The set of equations used in Program 5 describe very accurately the gravi-

tational force of the earth and the centrifugal and Coriolis forces caused by

the rotation of the earth. The force equations are derived in this section.

The coordinate transformations used are described here, and derived in Section 8.

7.___1The effective force exerted by the earth on a body of mass M, as ob-

served in a coordinate system gi fixed with respect to the rotating earth, is

M_g=Mi_g- 2 (_ gx _g) - (_g x (_g x _g)) }

M Mass of the body

7-1

G Gravitational acceleration

Angular velocity of the earth

A_

pg Velocity of the body in the coordinate system fixed

with respect to the earth

pg Position vector of the body with respect to the center of

the earth

_I = 7.292115851 l0 -5 tad. sec. -1

The term -2 (_ g x _g) is the Coriolis acceleration _, and -_g x (_ g x _g)

is the centrifugal acceleration C.
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7.__2The earth's gravitational potential at a point with geocentric coor-

dinates (# , Q_, A ) as defined in (8-2) is given in Reference 4 as

I J2 a2_ -kc 2 m I a i + (i - 3 sin 2 _)P

+ _--_ (3 - 5 sin 2 _) sin _.

2 p5

_4 (3 - 30 sin2_ + 35 _)sin 4

8p _

-Js, a5 (15 - 70 sin2_ + 63 sin 4 _ ) sin

8p5

_ (5 - 105 sin2_ + 315 sin4_ - 231 sin6_ )}.
7-2

The terms with coefficients J2 to J6 are the zonal harmonics and give the

effect of the equatorial bulge. The terms with coefficients J3 and J5 take

into account the asymmetry with respect to the equator as computed from satel-

lite orbit perturbations. The potential is symmetric with respect to the

polar axis, so no terms in A appear. Local irregularities, such as continents,

mountains, and oceans are not considered, and the gravitational force computed

from (7-2) for any specific point will differ slightly from the force measured

at the point.

Rewriting equation (7-2) yields:

P

B
a

+ kG3 (_-)

4
a

- kG4 (_-)

a 5

- kG5 (_-)

6
a

+ kG 6 (_-)

42

(i- 3 sin 2_'° )

(3- 5 sin 2 J) sin

(3 - 30 sin2_ + 35 sin4 _ )

(15 - 70 sin2_ + 63 sin4_ "° ) sinJ

(5 - 105 sin 2 _+ 315 sin 4 J - 231 sin 6 _ )_
_J 7-3



kGl = -32.146484 ft/sec. 2

a = 20,925,645 feet

kG2 = .00054114

kG3 = -.00000115

kG4 = -.000000265

kc5 = -.000000025

kG6 = .OOOOOOO625

7.3 The gravitational acceleration caused by _ is

a---& _ . 7-4

The vector G (M), the gravitational acceleration at a point M with

geocentric coordinates p M' LM' A M is evaluated in a Cartesian coordinate

system m i with:

Origin at M

m 3 directed along the radius vector from the center of the

earth to M

m 2 in the meridian plane of M.

Evaluating the gradient operator of equation (_at the origin of the m i system

yields

_m = _ 1 8

P M cos _LSA Im I m 2 •
M PM_ M 8P M

7-5
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In the notation defined in 9.1.2,

_m__ Glm mq + G2TM _2 + G# _3"

From equation 7-5, the components of _m at the point M are

#cos Z 8A

-1 _
e2m=

P 8Z

8#

Taking the indicated partial derivatives of ,_ from (7-3) yields:

2 2

_ (6 sin_ cos_M)a +kG 2 p MG# = kG1 PM M

3
(3- 15 sin2 Z M) cos M

(60 sin _M- 140 sin 3 ZM) cos Z M

(15 - 210 sin2_ M + 315 sin4_ M) cos_ M

a 6

+ kc6(-_M) (21osin M - 1260 sin 3 _M + 1386 sin 5ZM) cos Z M_

7-6
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2 2

a ['1 a) _g

- kG 3 (pa___)3 (12- 20 sin2_ M) sin _M

M

a 4

+ kG4 (_--_.M)(15 - 150 sin2_ M + 175 sin4_ M )

+ kG 5 (pa_._)5(90 - 420 sin2_ M + 378 sin4_ M ) sin

M
M

+ kG6 (_6 (37- 735 sin2_ M + 2205 sin4_ M - 1617 sin6_ M)].
M

7-7

7.4 The centrifugal acceleration _ in the m i system is

._m -_ -_ p mC =-_mx w mx M 7-8

_m = i_ I cos_ M m2 + s ZM m 3 7-9

.ab

-_ m m3" 7-10PM =PM

_M Distance from the center of the earth to M.

In component form

--m 1m_ _ 3m _C = C mI + C2 m m2 + C m 3

using (7-9) and (7-10) in (7-8) yields the components:

%m :0

= 2 sin_ cos_ 7-11c2m -_ P M M M
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2 PM c°s2 _ "c3m = w M 7-12

7.5 Under the combined gravitational and centrifugal forces, the earth

has assumed a shape normal to the resultant of _ + _. This shape is very

nearly an ellipsoid of revolution. The internationally adopted dimensions are*

Semi-major axes a = b = 20,925,647 feet

Semi-minor axis c = 20,855,497 feet

Flattening a - c _ i

a 298.3

The equation for any point M, with centric coordinates P

face of this ellipsoid is

M'' _M' on the sur-

PM' = a

_/l+k s in2 _ M'

where

a 2 _ c2
k = = .00673852.

c2

7.6

transformed into the _ i system by the transformation derived in 8.7.

the Coriolis acceleration &o is computed by

whe re

= _ cos LL_ 2 + sin L L .

The earth force vector in the _ i system is

The combined vector _m+ _m is the plumb line direction _m, and is

Then

*Reference 4.
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The earth force vector in the _i system is

and in the fl system (paragraph 8.9) is

_f--M 2 (a f- 9o" E

7-13

7-14
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8. Coordinate Transformation on the Esrth's Surface

u._.__._TraJecto_# data are computed by Program 5 in a Cartesian system
i

with origin at the launcher and with the _l _2 -plane normal to the direction

of a plumb bob at the origin. Three types of coordinate transformations which

are used in the computation of data in Program 5 are listed below.

8.1.1 The atmospheric data used in the program are tabulated as

functions of height above the sea level surface of the curved earth. In order

to use these data it is necessary to compute the height of the rocket, given

the rocket coordinates in the _i system. In addition, the data on a long

range trajectory are often more meaningful when the rocket position is given

in terms of latitude and longitude on the earth's surface. These three coor-

dinates--latitude, longitude and height--are termed geodetic coordinates.

Geodetic coordinates are described in terms of the geometry of the earth in

Section 8.3. The transformation from a Cartesian system such as _i is accom-

plished by using geocentric coordinates as an intermediate step. Geocentric

coordinates are geometrically described in Section 8.2. The transformation of

data from the
i system to geocentric and then to geodetic coordinates is

derived in Section 8.6.

8.1.2 The equations which describe the gravitational force field of

the earth and the centrifugal and Coriolis forces due to the rotation of the

earth are easily derived in a Cartesian coordinate system m i with:
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Origin at the rocket position

m3 axis in the direction of the geocentric radius vector

m2 m 3-
plane co-planar with the meridian plane of the rocket.

__he transformation from the _ system to the m i system is given in 8.7.

8.1.3 It is sometimes required to give the rocket trajectory data

in a Cartesian system ti, with origin not located at the launcher. In general,

this coordinate system will have the tI t2-plane normal to the plumb line

direction at the origin. The transformation from the _l system to the t1

system is given in 8.8.

8.___2 Geocentric spherical coordinates are shown in Figure 8-1. The origin

at the earth's center is point C; the polar axis is CN_ the reference (Green-

wich) meridian is the arc AN; the local meridian is the arc BN. The geocentric

spherical coordinates of a _olnt M are P M, A M3 J M" P is the magnitude of- M

the radius vector from the earth's center to M. J M is the geocentric latitude

of M, and is the angle between the vector P M and CB, the projection of P M

on the equatorial plane 3 measured positive north from the equator. AM is the

geocentric longitude of M, and is the dihedral angle between the local meri-

dian plane and the reference meridian plane, measured positive west. The

solid arcs on Figure 8-1 indicate a geocentric sphere with radius the semi-

major axis of the earth, a, and the dotted lines indicate the relationship

of the earth's surface to such a sphere. The earth's surface is considered to

be an ellipsoid of revolution with semi-major axis, a, and semi-minor axis c.

Section 8.4 gives the dimensions adopted.
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8.___3Geodetic coordinates are coordinates which are measured with respect

to the earth's surface. Geodetic height is distance from the sea level surface

in the plumb line direction. The plumb line direction at any point is the

direction of the resultant of the gravitational and centrifugal forces at that

point. Strictly speaking, the sea level surface is the geometrical shape

which __t 8_Dy point is normal to the Dlumb line direction at that point and coin-

cides with the average position of the surface of the oceans. The sea level

surface is approximated by the ellipsoid of revolution defined by equation (8-i).

Geodetic coordinates are shown in Figure 8-2. _ne surface ADN' is the octant

of the ellipsoid. C is the center of the earth, N' the north pole; the arc AN'

is the reference meridian and the arc BN' the local meridian. The point M' is

the foot of the perpendicular from M to the ellipsoid. The geodetic coordin-

ates of M are HM, LM, A M" The geodetic height HM is the length of the llne,

M'M; the geodetic latitude 3 LM is the angle between the equatorial plane and

the extension of M'M; and A M_ the longitude of M is the same in geocentric

and geodetic coordinates.

8.4 The earth's surface is defined* to be an ellipsoid of revolution with

a = 20,925,647 feet

c = 203855,497 feet

a - c 1

a 298.3

The equation for this ellipse can be written

p= a 8-1

_/l+k sin2_

*Reference 4.
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whe re

a2 _ c2
k = = .00673852. 8-2

c2

!

M

C

8.4.1

points M and M'

and geodetic latitudes ofM'

FIGURE 8-3

Figure 8-3 shows both geodetic and geocentric coordinates of

in the local meridian plane. The difference between geocentric

is 8 L M,

8 L M, = L M - _M' "

The difference between the geocentric latitudes of M and of M' is 8J
M

54
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v

A general equation for 8_in terms of'_and L is used to show the relation

between geodetic and geocentric coordinates.

Figure 8-4 illustrates the geometry by which the equation for

8 Lp can be derived. P is any point on the surface of the ellipsoid and the

arc AA' is a segment of a geocentric circle with radius P (_p). 8 Lp is the

_ngle between SS' and AA' at P. From the figure

tan _ Lp = lira - AP

A --)0 ppa_

i lim - a P

P p A_-_ 0 a_

_ 1 (" --_)IPP p=
Pp

Taking dP/dJ in equation (8-1) and dividing by P yields

tan8 Lp = k sin_ p cOS_p 8-4

l+k sin2_p

or

tan8 L = k sin J cos

l+k sin 2

for any point on the surface. To find 8 L as a function of L let J= L - $ L in

(8-4)

tan 8 L = k sin (L - 8 L) cos (L - 8 L)

l+ksin2 (L- _ T_)

and by trigonometric identities

sin 2 8L

i + cos 28L

k

sin(2L- 2SL)

k (1- cos(2T.-28T,))
i+_
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Expanding the right side in terms of sine and cosine of 2L and 28 L, clearing

fractions and collecting terms in 2 8L yields

tan8 L - k sinL Mcos LM.

l+k cos 2 LM

8-5

8.5 Given geodetic coordinates of a point M3 (HM, LM, A M), to find the

geocentric coordinates (P M,_M, A M), compute

8L M, = tan -I k sin LM cos LM

l+k cos 2 LM

8-6

a 8-1
PM' =

_/l+k sin2_ M'

From the triangle MCM' in Figure 8-3

PM =JP M'2+ _ + 2PM'_Moo__ 8-7

or

_M = sin-i ( KM sin8LM')RM
8-8

8-9

8.6

below:

The problem of transformation stated in 8.1.1 above is restated

Given a Cartesian coordinate system 2_,.:. 22' 23 defined as follows:
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I

PM

M

_I_rP_ 8-5
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Origin

plane

at L, with geodetic coordinates HL, LL, A L

normal to the plumb line direction at L'

axis positive east

axis _^-_+_'r_ nn_fh

axis positive up, along the geodetic vertical through L,

and given the coordinates of a point, M, with respect to

L, defined by the vector _ x9

Rm -X m 21+Ym +z .

Find the geocentric and geodetic coordinates of M.

The problem of finding the geocentric coordinates of M is the

problem of defining the vector_ M from the center of the earth of M. Figure

8-5 shows that

8-10

HL

PM = + H2 + L' 8-11

vector from L to M

PL'

vector from L' to L, where L' is the foot of the perpendi-

cular from L to the earth ellipsoid

vector from the center of the earth to L'.

To use equation (8-11)the vectors must be referred to _ common coordinate system.

For this purpose, define the Cartesian system ci
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Origin at the earth's center C

cI c2-

plane the equatorial plane

_3

c2

along the polar axis, positive north

in the plane of the reference meridian.

Then

ILpMIcosmM sinAM]
-'- C = I

_°-- p_ IPMIoos_McosAM

L[PMI sin _M

P L ,c =

]PL'I cos _L' sin AL,-

l%,lcos zL,cos&,

I%'I sin _L'

8-12

8-13

6O

where

rotating about the 21axis throu_=h an angle -( _12 - LL) , so

that the rotated "3" axis is parallel to the c3 axis.

rotating about the rotated "3" axis through an angle ( _ + AL).

8-15

(2)

Similarly, since _L is in the direction of the _3 axis:

Using the notation defined in Section 9, the vector Rm_ in the ci system is

(_") C _ ( I_ + A m ) ] [ _l ( L m -- _ ' 2 )] _: 8 - 1 _

In verbal terms, the transformation from the _i system to the ci system is

obtained by

(1)



Combining equations (8-i0) through (8-16) yields the scalar equations

_ Xm.4' cos A L'

- ym _ sin LL, sinA L' + (Zm_ + KL) cos L L, sin A L' 8-17

ym C =
]PM!COS_M cosA M = IPL, I cos_ L' cosA L, + Xm-e sinA L'
i

-ym _ sin LL, cos A L' + (Zm_ + HL) cos LL, cos A L' 8-18

C
z
m = PMI sin_M = IPL,I sin_L, + ym -_ cos LL, + (Zm-4' + HL)sin LL, •

8-19

Then by taking the sum of the squares of equations (8117), (8-18) and (8-19)

PM = _PL'2) + (Xm'g) 2 + (Ym'e) 2+ (Zm "g + HL)2

-2P L, fym-g sin (L L, - _'OL, ) - (Zm'g + HL) cos (L L, -A_

solving equation (8-19) for sin _M:

sin _'°M = zinc

PM

,oL, ym-'#' (z_m.-¢+ aL)
- sin _L, + _ cos LL, + sin LL,

sin _M PM PM PM
8-9_1

and since (-90" <_M_90.)

cos _M = _/1 - sin 2 _M " 8-22

Multiplying (8-17) by cos A L' and (8-18) by si]A L' and subtracting yields:

sin (A M - A L) =
xm c cosA L- Ym c sinA L

PM cos _M
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Xm_ i
sin (AM - AL) =

P M cos _M
8-23

Multiplying (8-17) by sin A L' and (8-18) by cos AL' and adding yields:

xmC sinA L + Ym c cos__ L
cos (AM - AL) =

P COS
M M

cos (A M - AL) = cos_ L' sin LL,
cos_ M RM RM

+ (Zm2 + HL) cos LL,.
RM

8-24

Equations (8-20) through (8-24) give the geocentric coordinates of the point,

M PM, _M, AM. To find the geodetic coordinates HM, I,M, A M the best approach

is an approximation, since exact solution requires solving a cubic equation.

Compute a first approximation to PM" by using _M in equation (8-i). This

yields the radius to the surface at _M

Then since

( PM')I = a

q/l+k sin2 _M

8_ M is very small

8-25

(_M)l= PM- ( P_')z"

This value of (HM) is accurate to i:I05.

(_LM')I = tan-1 (k sin_N c°s _N)"l+k sin2 _ M

Using the law of sines in the triangle MC},I'in Figure 8-3 yields

(8_M)I = sin_II(HM) 1 sinRM(_ LM,)I.I
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(*M')l--zM - (8_M)l

k sin(*M')lcos(*M')l
(_I_,)2 =

l+ksin2(*M')i

(a _ _)2 = sin-Z _RM)I sin (S T,M,)

8-29

8-30

8-31

4_ = ,Z'M+ ( '_T'H')2 + ( __H)2" O- 3,"

8.7 The problem of transformation stated in 8.1.2 above is restated here:

Given a Cartesian coordinate system 2]. defined as 8.6 and a system

m i with

Origin at the point, M, as defined in 8.6

..%

m3
__k

in the direction of the vector, PM from the center of the

earth to M

m 2

..%

m I

normal to m3, in the plane of the meridian of M

normal to m 2 and m3, positive east.

Find the transformation between 2i and m i.

Figure 8-6 illustrates the relationships.

mation of any vector V from m i to 2i system is

In verbal tems, the transformation is obtained by

(1)

(2)

The equation of transfor-

"'/2 )_ _m. 8-33

rotating about the m I axis through an angle -( _/2 - _M)

rotating about the rotated "3" axis through an angle (A M - A L),

so that the rotated "2" axis and "3" axis are in the meridian

plane of L
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m 3

m

M

AL

FIOLrP_8-6
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(3) rotating about the "l" axis through an angle ( 77"/2 - LL).

Equation 8-33 is written

and the terms of _ij_ can be obtained by substituting into (8-33) the forms

...... _.... *..... +_+_= a_ned in (9-8], (9-9) and (%10), with

A M - A L =AA .

all = cos A A

a12 = sinAA sin _M

a13 = -sinAA cos _M

a21 = -sin L L sin /MA

a22 = cos LL cos _M + sin LL cosAA sin _M

a23 = cos LL sin _M - sin LL cosA/_ cos _M

a31 = cos LL sinAA

a32 = sin L L cos _M - cos LL cosAA sin _M

a33 = sin LL sin _M + cos LL cosA/_ cos _M '
8-35

The matrix [aij_ &efined bY the nine equations (8-35) is the matrlx such that

_= [aij_ _ m.

8.8 The problem of transformation stated in 8.1.3 is restated here:

Given a Cartesian coordinate system _i defined as in 8.6 and a Car-

tesian system t i defined as follows:
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Origin at T with geodetic coordinates (HT, LT, AT)

tI t 2-

plane normal to the plumb line direction at T

tl axis positive east

t2

t3 axis positive up, along the geodetic vertical through T.

to L.

Given Xm2 , ym 2, Zm2 , the coordinates of a point, M, with respect

Fin_____dXm t, ym t, Zmt the coordinates of M with respect to T.

Figure 8-7 shows the relationships.

66

t -" -- -_ -" %2= -HT - PT' + PL' + HL +

PT 't : 1 (- 8

B

0

0

PT'

_L,t- - IRI( "rr/2- LT_[R 3 (-AT+ ,_,)][R_ ,t=_ _/_8

_Lt = [RI (_/2- LT)]FR 3 (-AT + AL)][R 1 (_ - _/2)_

8-35

8-36

8-37

0

0

PL'

8-38

"I
0 1

o 8-39

HLI
._l



M

R T
M

t 2

A L

FICU_ 8-7
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,,-/2)-Jym
Zm_

Using equations (8-36) through (8-40) in (8-35), and using the definitions

of Section 9 ....._-" "

_mt = k e

Zmt / k

bll

+ b21

b31

b12 b13

b22 b23

b32 b33

w

/
In (8-41), the elements are:

8-40

8-41

bll = cos (AT - AL)

b12 = -sin (A T - A L) sin LL

b13 = sin (A T - AL) cos LL

b?_I = sin LT sin (A T - AL)

b22 : cos LT cos LL + sin LT cos (A T - AL) sin LL

b23 = cos L T sin LL - sin LT cos (/i T - AL) cos LL

b31 = -cos L_ sin (/iT - AL)

b32 = sin LT cos LL - cos _ cos (A

b33 = sin LT sin LL + cos LT cos (A

T - AL) cos LL

T - A L) cos LL. 8-42
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kl = -b12 PL sin 8LL + bl 3 (EL + PL cos 8 LL)

k2 = - PT sin 8L T - b22 PL sin 8 LL + b23 (HL + PL cos 8LL)

k3 = -HT - PT cos 8L T - b32 PL sin 8L L + b33 (HL + PL cos 8LL).

The nine elements of ko-_=; give _^ -^_-+_ o_a eh_ three elements of

(8-43) give the translation for transforming from the _I system to the t i

system.

8-43

with

8.9 The differential equations of Program 5 are computed in a system fiJ

Origin at launcher

fl f2-

plane coincident with 21 _2 -plane

fl along firing azimuth

f3 along 23 axis.

The transformation from _i to fi is

a f azimuth of firing, clockwise from north.
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9. Vector and Matrix Notation and Definitions

_ "_^ _+_+_ __ _ th_ s_t_on _[s intended to provide a systema-

tic and relatively compact means of writing vector e_xations which involve

coordinate transformations. The key to the notation is the use of subscripts

and superscripts to define the coordinate system used. Thus, the basic symbol

assigned to a vector remains the same, even though the coordinates are trans-

formed to a different system.*

With one exception, the definitions g_Lven below are repetitions of

standard definitions in elementary vector and _latrix theory. They are re-

peated here to illustrate the notation. The exception is the definition of

the derivative of a vector, and the resulting derivation of the equation for

the derivative of a vector in a rotating coordinate system.

9.1.1 In discussion of Cartesian coordinate systems each of the

three axes will be referred to by an identifying letter, characterizing the

coordinate system_ with a subscript number, l, 2 or 3, identifying the axis.

For example, the axes of a body based system will be called bl, b2, b3; the

axes of a ground based system, gl, g2, g3" The systems will be referred to

as the b i or the gi system. The unit vectors directed along the three axes

of a system will be designated by the axis identifiers with a vector symbol.

For example, bl, b2, b3; gl, g2, g3" The three axes of a system are so defined

*The notation is adopted from that used in Reference 5.
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that they constitute a right handed system.

system are :

The conditions for a right handed

gl x g2 = g3; g2 x gl = -g3

g2 x g3 w gll g3 x g2 m "gl

g3 x gl = g2; gl x g3 = -g2"

9.1.2 A vector which is expressed in terms of components in a given

system is identified by using the identifying letter of that system as a super-

script. For example, the vector V expressed in the body coordinate system is

_b. The scalar components of the vector in the system referred to are identi-

fied by the vector identifier, with the coordinate system identifier as a

superscript and the axis identifier as a subscript. For example:

: vlbk + V2b b2 + V3bb3• 9-2

In the special case of a radius vector from the origin of a

system to a point the symbol used will be R with a superscript identifying the

coordinate system, and a subscript identifying the point. The components of

such a radius vector will be written x, y, z, with the same subscript and

superscript.

For example Rmg will designate the radius vector from the ori-

gin of the gi system to the point M, and is written in component form:

g = xmg gl + Ym g g2 + zlng g3"

Vectors will also be written as column matrices, i.e.
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_l s]

xmg
-_g
Rm = ymg .

Zm_

9.1.3 The vector identifiers are upper case, and the corresponding

unit vectors lower case. The unit vector in the direction of a vector V is

v, and the magnitude is IVl, so that:

v:Ivlv 9-3

and

Ivl-bv

_A

The components Vl, v23 v3, of the unit vector v in a given

system are the direction cosines of V in that system.

9-4

9.2 Coordinate Transformation Notation and Conventions

9.2.1 If ri and si are any two Cartesian coordinate systems, and if

V is any vector, the relation between the components of V in the ri system

and the components of V in the si system is written:*

*Reference 6, Chapter 4.
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'I

TIs I

Z2Sl

I
sj

all a12 al

a21 a22 a23

a31 a32 a33

VI r

V2 r

v3r

In this equation, aij is the cosine of the angle between si and rj. The ele-

ments, ail , ai2 , ai3 , of the ith row of the matrix are the direction cosines

of the s i axis in the rl, r2, r3 system. The elements, alj , a2j , a3j of the

jth column of the matrix are the direction cosines of the rj axis in the SlJ

s2, s 3 system.

The inverse relationship to (9-5) is:

9-5

" "I F

¥i rl _iI a21 a31
I

I
v3rj C13 a23 a33

i

V2 s I .

9-6

The matrix of the inverse transformation is the transpose of the original

matrix.

The relationship (9-5) also holds for the unit vectors of the

two systems:

Sll "ii a12 al:

s2! = la21 a22 a23

b _

r-, I

r2 1 •

9-7

t

The mat'rix of equations (9-5) and (9-7) is called a "direction cosine matrix",

an "orthogonal transformation matrix" or simply a "rotation matrix", For ease

of writing, equation (9-5) is written
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and in general, a matrix

all

a21

a31

k _JJ

a12 al 3

a22 a23

a32 a33

The element in the ith row and jth column is written aij.

The inverse matrix

all a21 a31

a12 a22 a32

al 3 a23 a33

F "I

9.2.2 Several facts about matrices such as laiJl are important:

I, 0 --_(a) The rznogonality conditions" are

3 3

Z aij2 = _ aij2 = 1
i=l j=l

3 3

aij aik = _ aij akj = O.
i:l j:l

(b)

(c)

The determinant of the matrix i equals i, if iJ

is a transformation between two right handed systems.

The co-factor of any element aij, in the determinant of

the matrix [ai_], is equal to aij.
L o]
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and

(d)
The identity transformation matrix is designated by Ill;

1

0

0 0

i 0

0 i

m

(e)

[aij] [aji1 = Ill.

If laijl and [cij1 are orthogonal transformation matrices_

there exists an orthogonal transformation matrix [bij _

such that

9.2.3 If ri, si and ti are any three distinct Cartesian systems and

V is any vector_ the relationships can be written:

then

_t= hfiJJ _r

That is: the matrix defining the result of two successive rotations is ob-

tained by taking the product of the matrices defining the individual rotations,

with the matrix of the last rotation on the left. Since matrix multiplication

is not commutative_ the matrices must be multiplied in the same order as the
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rotations are considered.

9.2.4 The transformation of the coordinates of a point M from one

system to another involves a trans]at_ion and a rotation

--_ S

Rm

-_ r
Rm

Rs r

Rm = i

= R a )i (gm_-- _"

the vector from S to M expressed in the si system

the vector from R to M expressed in the r i system

the vector from S to R in the s i system

the vector from R to S in the r i system.

9.3 Elementary Rotations

In many applications, the 3 _ 3 matrix Fai_ is difficult to obtain

directly. For this reason, we consider elementary rotation matrices. An

elementary rotation is here defined as one in which one of the axes remains

fixed, and the other two axes rotate about the fixed axis. Any possible ele-

mentary rotation can be expressed in terms of one of the three matrix operators

defined below.

9.3.1 A positive rotative rotation about the "i" axis is defined as

I

one by'which the "2" axis rotates toward the "3" axis. If the axes si are

defined as the axes obtained by rotating the axes r2, r3 about rl, through an

angle @ as in Figure (9-1a) then:
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vls]
0

IV2 s I =

V3S
|

l

1

0

0

0

cos @

-sin @

0

sin @

cos @

vlr]
V2 r I .

v r] 9-8

r5

s3
%

\
\
\

\
\

\

\
\

-'_'_0

rl, SI

s

r2

FIGURE 9-1a. Elementary Rotation about rl Axis

All positive rotations about the "i" axis yield matrices of the form

I 0

0 cos

0 -# in

m

0

sin

COS .

This form will be abbreviatecl to _l_ and efluat ion ( 9-8 ) written
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9.3.2 A positive rotation about the "2" axis is defined as one by

which the "3" axis rotates toward the "i" axis. If axes ti are defined as

those obtained by rotating s3, sI about s2, through an angle _ as in Figure

9-1b then

Iv_I: Io _ o
Lv3tjIsin o cos L

VI s

v2S

V3S 9-9

S3

t_
\
\
\
\
\

i/i/i/

tl

S2 , t2

FIGURE 9-1b. Elementary Rotati)n about s2 Axis

All positive rotations about the "2" axis yield matrices of the form

R21 =
s 0 - siol

i

_sin 0 cos_
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and equation (9-9) is written

t iR2 _-

9.3.3 A positive rotation about the "3" axis is defined as one by

which the "i" axis rotates toward the "2" axis. If axes u i are defined as

those ........
uu_ by ........_+o+_Q_l_- t2 about t_,_.through an angle _ as in Figure

9-1c then

vlu

v2u

V3U

i n

cos _ sin 9 0

-sin @ cos @ 0

0 0 i

Vlt I

v2t !.

Lv tj 9-10

t3_ U3

a

/

/ , /
tl /

U I

I
f

I

..... _U 2

I

FIGURE 9-ic. Elementary Rotation about t3 about Axis
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All positive rotations about the "3" axis yield matrices of the form

rossinno0
o--ndequation (4-8) is written

9.3.4 Th@ fore of the elementary rotation matrix is, of course,

independent of the symbol used to designate the angle. For example, a rotation

about the "I" axis through an angle a, as shown in Figure 9-2a would be re-

presented by the matrix:

m

1 0

[RI (a)] = 0 cos a

0 -sin a

m

0

sin a

COS a .

If the angle used in the rotation is not positive in the sense defined in

9.3.1; for example if the rotation is through an angle _ about rI from r3

toward r2, as shown in Figure 9-2b 3 then the rotation matrix is:

01sin (-_)

cos(-

0

COS

sin

m

0

-sin

COS /_

0

sl (-_): cos(-_)

' -sin (-_)

1

0

0
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If the angle used is not defined as the angle between the r 2 axis and the s2

axis, the rotation can still be expressed as such an angle. For example, in

Figure 9-2c, the angle _ is the angle between the s2 axis and the r 3 axis_

positive from r 3 toward s2. This rotation is written:

i

0

0

i

0

0

0 0

cos(× - n/2) _in(× - n/2)

-sin(x - n/2) cos(_ - n/2)

0

sin k

COs

0

- COS )_

sin k .

9.3.5 By using the convention that all elementary rotations will

be written using the operators [RI ()], JR2 ()_, JR3 ()] much confusion

can be avoided. All rotation angles can be expressed in terms of positive

rotations about one of the "_hree axes, as defined above.

9.4 The result of the three rotations described by equations (9-8), (9-9)

and (9-10) is written

9-11

and by multiplying the three matrices

_U" [aijl _r

whe re
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r3 r3

$3

$3

S2

rI _s I

FIGURE 9-2
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F_
Any matrix

[ai_ defines a unique relationship between two coordinate systems,

and depends only on the relative orientation of the systems. The series of

rotations as defined in (9-8), (9-9), (9-10) may be defined in the conditions

of the problem, or may be a mathematical artifice to enable us to see the

transformation one step at a time, in two dimensional representation. These

elementaz-y rotations define the transfomation in terms of angles, which are

sometimes easier to work with than direction cosines.

The matrix _iJl was defined in terms of three elementary rotations_

as shown by (9-11). The rotation at the right was taken first_ so that this

was a sequence RI_ R2, R 3. If the sequence had been different, for example

RI, R 3, R 2 then the resulting matrix product [R2 (_I IR3 (@ _ [R1 (@_ would

not equal the laijl obtained before. However, it would be possible to find

three angles, which _e can call @', _', @' such that

=
In fact for any given direction cosine matrix [aij] and for any of the sequences

of rotation listed below it is possible to find a set of three angles such that

the resulting matrix product is equal to laij] .

RI, R2, R 3

RI, R3, R 2

, R2, RI, R 3

R2, R 3, RI

R 3, RI, R 2

R3, R2, RI 9-13
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RI, R2, RI

RI, R 3, RI

R2, R I, R2

R2, R 3, R2

R3, RI, R 3

R 3, R2, R 3 9-14

will be equal to the given [ai_. The rotations (9-13) are called nonrepeti-

tive sequences; the sequences (9-14) are repetitive. It is possible to express

any problem involving coordinate transformations in terms of elementary rota-

tions in any one of the twelve ways.

The choice of sequence may depend on one or several of the factors

listed below:

(a) Actual knowledge of rotations involved, as implied by the geometry

or by mechanical systems involved

(b) The physical laws involved, which make the computations much

simpler and the output much more meaningful in one system of

angles than in any other

(c) The output data from the problem which may be required to be in

a given set of angles.
!

For example :

(a) In reduction of ballistic camera data, it is convenient to trans-

form data from an "object space" to an "image space". If the

camera is mounted on a precision three-axis mount which rotates
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(b)

first in azimuth, then in elevation, then in tilt, the angles

used would be those measured by the scales on the mount and

the angle sequence used to describe the transformation would

use the same order of rotation as do the three axes of the

came ra.

in the classical so_ut_o_ of the dynamics of a force free rigid

body a transformation between inertial axes ii and body fixed

axes b i is made. The sequence chosen is R33 RI, R 3 resulting

in a transformation matrix

R 3 (¢) R 1 (9) R 3 (_).

The inertial coordinate system is chosen with i3 directed along

the angular momentum vector of the body. With this choice of

coordinates, @ is the spin angle, 9 the nutation angle and

the precession angle. The physical laws have a relatively

simple fom in terms of these angles_ and the angles themselves

have definite meanings. This sequence yields the so-called

"Euler Angles".

9.5 Differentiation of Vectors and Matrices

The derivative of a scalar _lantity with respect to time is indicated

by a dot over the quantity. The derivative of a vector quantity, as used here,

is the vector made up _f the derivatives of the scalar components of the original

vector. In this sense, differentiation is meaningful only as defined in a

specified coordinate system.

*Reference 6, Chapter 4.
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In the notation defined in 9.1.2

= r r_r Vl + v2r r2 + V3

The derivative of _s is:

_h

r:_, 9-15

"% " "% S "_

_S = _i s Sl + V2 s s2 + V3 s]_. 9-16

Now if

_S [a j] _rV = i

the derivative of (9-17) is

9-17

ai_ is the matrix whose elements are the derivatives of the corresponding

e_eme_t__ [a_._ _t_n_(%_7)_ t_r_e_ _t_o_ _ _n_
the derivative of both sides of each equation, then rewriting as a matrix

equation, we obtain (9-18).

Equation (9-18) is equivalent to the equations

9-18

_S la_@r _s _s= i - x

_S _i_ (_r _r

where _ is the angular velocity vector of the si system with respect to the

ri system.*

Equations (9-19) and (9-20) are derived on the following page.

9-19

9-20

*Reference 6, p. 133.
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9-21

where _ij (t)_ is the matrix Eaijl as a function of time, Eaij (tl)_ is the

L_ t._ ...... _-_vmakes (9-21) true. ij _ is _i_ ....... def_ing the rotation of the si

system from the time tI to the time t.

Now consider the derivative of a general matrix product. If

Taking the derivative of both sides of (9-21) yields

[aij (tl = [bij (t I laij (tll + [bij (t_

Since _ij (tl)_ is the value of Eaij] at a constant time,

and

Eaij (tl)l"

_ij (t)_ = _ij (t)_ [aij (tl)_ .

[bij (t_ can be written as the product of three elementary matrices:Now

I

where ER1 (@)_ , [R2 (_)_, IR3 (_I are functions of time.

*Any non-repetitive sequence can be used in the derivation.

sequence invalidates equation (9-28).
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4, @, _ are the three angles which describe the rotation of

the si system with respect to its position at time t I. The angles are zero at

t I • Then

in which the ai_g-_mentsof the rotations are omitted for convenience.

derivatives [RI] , JR21, [R3] are obtained from (9-8), (9-9)_ (9-i0)

I I0 0 0

_] _s_o_o_
-$ cos Q -$ sin

--_ sin _ 0 -_ COS

0 0 0

_ cos ¢ 0 -_ sin ¢

- _ sin_ _cos_

- _ cos_ - _sir_

0 0

0

0 .

0

Now if we let t approach tI

t --_ tl ij (t =

lira [b (t)_ lira
t___tl iJ t__.tl

t_t] _bij (t)_ [aij (tl)_

÷[_][_][4+[q[4

The

9-23

9-24

9-25

9-26

9-27
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Since

lira lira lira

(t) -- @ (t) =

t --e tI t --_ tI t --st I

¢(t) :o 9-28

then using (9-28) in (9-8), (9-9) and (9-10)

[R1 (t)] = [R2 (t)] =

t --_ tI t --_ tI t --_ tI

[R3 (t)]=

1 0 0

0 I 0

0 0 1

9-29

and using (9-28) in (9-24), (9-25) and (9-26)

t ___tl i (t =

0

t---_t I

I0

_&

o -_

0 0

0 0

9-30

9-31

0

9-32

Substituting (9-29) through (9-31) into (9-27) yields

0

I

o

-& 0

9o

9-33



and

t___t I ij (t) :
-_ o

oi
l

9-34

tI is an arL,i_ri_y _ t_m_ and (9-34) is true for any choice of tl, so

(9-34) is true in general.

o

-W 0

0

9-35

From the definitions of _ , @ and _; @ is the rate of rotation

of the si system about the sI axis; _, the rate about the s2 axis; _ , the rate

about the s3 axis. In other wordsj at the instant t = tl_ @, _, _ are equal to

the components of the angular velocity vector _ resolved in the Sl, s2, s 3

system:

s is w 2s= w sI + s2 + _ 3s s3

= sI + _ s2 + W s3.

9-36

9-37

(9-35) can be rewritten:

where the symbol E_i s] means

9-38
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D

0

_2 s

w3s - _ 2s

0 wlS

- _,Is 0

Using (9-18) and (9-17) the last term in equation (9-18) can be written

= [ is]s.

Then finally, expansion of (9-/40) will show:

so that

_s = [aij] _r- _s-x _s.

Another expression for V s is obtained by multiplying (9-38) on the left by

to get

but, as can be verified by performing the multiplications,*

*Reference 6, p. 105.
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so that

B_]:[a.]
Using (9-41) in (9-18) yields

Iwir 9-41

approach.

is the inclusion of the rotation matrix in the equations.

9.5.2 Taking the derivative of (9-18) yields

and from (9-38)

v_Fa__ [a][_J= vr+ iJ i
L_

The above derivation yields the same results as the classical

The advantage of (9-19) and (9-20) over the operator definition*

_s = Iaij ] _r+ 2 [aij ] _r+ Eaij 1 _r

E_iJ 1 = ddt [wisl _iJ 1

From (9-38), the second term of (9-43) is

so that (9-42) becomes

_i_]_i__i_

*Reference 6, p. 133.

9-42

= [aij ] "@r+2 [w is ] Ea_j ] _r

+ [_i s] [_is] [aij] _r+

V s

_iJ] • 9-43

V •[_i_][ad_r 9-44
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From (9-18)

= V° - i _r

:__[_]_.
Substituting (9-45) into (9-44) yields

9-45

9-46
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I0. Equations

lO.1 Tower r_: ..... s

Tower phase equations are used in Programs i through 4_ if the

initial Zm_ is less than z T"

i0.i.i Variables of the Differential Equations

xI = im-e

X 2 = xJ

x 3 = £m 2

x4 = Zm£

10.1.2 Initial Conditions

10.1.3

xi] o = 0

Differential Equations

Xl = (IT[- IDI - M [E I c°s @o)sin @o/M

x2 = x1

x3 = (IT[- [DI-M [E [ cos @o)cos @o/M

x4 = x3
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10.1.4 Exit Conditions

Exit tower phase when

Zm_ = zT

by an altitude discontinuity check. Exit to the atmospheric equations.

10.1.5 Functional Equations

ITI

M

@o

from 5-1

from 6-5

from mass table (Section 5)

from 4-9

trajectory parameter

I0.2 Two Dimensional Particle Atmospheric Equations

Two Dimensional Particle Atmospheric equations are used:

(a) in Program i starting from tower exit;

(b) in Programs 2, 3, and 4 after angle of attack oscillations

damp out,

(c) in Programs i through 4, from re-entry to impact.

10.2.1 Variables of the Differential Equations
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10.2.2 Initial Conditions

(a) For Program I, starting in tower, initial conditions

are tower exit conditions.

(b) For Program i, starting above tower, initial condi-

tions are read in on cards.

(c) For Programs 2, 3 and 4, starting at the switch from

rigid body equations, initial conditions are obtained

from the rigid body equations.

(d) For Programs i through 4, on re-entry, initial condi-

tions are obtained from the vacuum equations.

i0.2.3 Differential Equations

xl ITIIoI inoJM
x2 = xI

x4 = x3

10.2.4 Exit Conditions

(a) During ascending flight, exit when Zm_ + HL = 300,000 ft.

by a discontinuity check and after burnout of last

stage. Exit to vacuum differential equations or to

closed form equations controlled by program switch.
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(b) During descending flight, exit when Zm2 = 0 by a

discontinuity check. Exit to next trajectory, with

@o + /k Q replacing @o, or to program halt if @o is

Oma x •

i0._.5 Function_l E quat.i.ons -

Iml
i±i from 5-1

ID[ from 6-5

M from mass table

IE[ from 4-9

sin 0 = _f/V

cos o = £m_/V

v =_/(_2 )2+ (%2)2

I0.3 Vacuum Equations

Vacuum equations are used in Programs 1 through 4, when (zm2 + ZK)>

3003000 feet, and after thrust terminates.

10.3.1 Variables of the Differential Equations

xI = i2

x 2 = xm2

x 3 = 9__n2

x4 = Zm2

i0.3.2 Initial Conditions

Initial conditions are obtained from last point of atmos-

pheric equations.
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10.3.3 Differential Equations

_i = 0

_2 : Xl

_3 = -IEl

x4 = x3

10.3.4 Exit Conditions

Exit when (Zm_ + HL) = 300,000 feet on the descent by a

discontinuity check.

10.3.5 Functional Equations

IE[ from 4-9

10.4 Closed Fore Vacuum Equations

Closed fom vacuum equations are a program option to be used instead

of vacuum differential equations.

10.4.1 Initial Conditions

z v

mY

rim _

Xm_

= _m _

Zm_ entry to vacuum

10.4.2 Apogee Equations

Xp Xm_l

Zp Zm_ ,

i tv t peak

z__Zv+_v_I_o+zv_O_o_o_-_v_(_o+zv_
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tp --tv +_/(zp z_)<Ro+ zv)(Ro+ zp)

_--x V+i,_(tp- tv)

10.4.3

= X v

Zp = 0

Re-entry Equations

x r

x r

Zr

Zr

tr

Xm_

Xm2

£m2

z/

t re-entry

xr =x v+ 2xv(tp- tv)

Zr = £v

Zr= z v

10.5 Rigid Body Equations

Rigid Body equations are used in Programs 2 through 4, beginning

at tower exit.
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10.5.1 Variables of the Differential Equations

io.5._

xI = V/

x2 = v32

x3 =

x4 = G

x5 = Xm2

x6 --Zm2

x7 = _ (Program 5 only)

Initial Conditions

xI =

x 2 =

Rm-g cos G o

_I sin G 0

x 3 = _o

x_ = Go

x5 = Xm2

x6 = zm2

x7 = _o (Program 5 only)
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o

_o

_o

Xm_

Zm_

trajectory parameters from input data

from tower exit conditions

i0.5.3 Differential Equations

Xl__i(Tib+Alb )+Elb_ x3x2
M

x2 _-I_ (T3b + A3b) + E3b + x3 xi
M

_3 T( b.+ + ML,D +

34 = x3

* +

x5 = Xl sin_ - x2 cos

= xI cos_ + x2 sin

i

_7 =KR VR

or

x7 = _ (t) from table

program option in Program 4

io.5.4

*Program 4 only.
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Exit Conditions

(a) Exit to particle when angle of attack has been less

than a pre-set E for ten successive iterations.

(b) Exit to particle when a pre-set altitude is reached.

(c) Exit to program halt at impact Zm_ = O.



I0.6

Io.5.5 Functional Equations

_b

_b

_b

_jb

-_ b

ML, P

-_ b
MFM

5-2 or 5-3

6-9 or 6-13

4-9 and 4-16

5-6 (Program 4 only)

5-7

6-14

6-15

M_ b 6-17

Three Dimensional Particle Equations

Three Dimensional Particle equations are used throughout Program 5-

10.6.1 Variables of the Differential Equations

xi = _#

X 2 = Xm f

x 3 = Ym f

x 4 = YJ

x5 = £mf

x6 = zzf
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10.6.2 Initial Conditions

(a) For tower phase

xi Io = 0

(b) For atmosphere phase

xi Io = xi tower exit

(c) For vacuum phase

xiIxiio HM =H V

HV = 300,000 feet or HV = H M at thrust termination

whichever is greater

i0.6.3 Differential Equations

(a) Tower phase

_ E_I- _J-,'-"I_,1_oso_s_o_o_,_/_
_2 = Xl

£4 = x3

,_--EEI_I-L_L+_I_l_o_0]_o_0],,,,,
x6 = x5
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(b) Atmosphere phase

xl= _b ID _in_cos /M÷_if

x2 = Xl

x3 = T - ID sin @ sin /M + E2 f

L--

i4 = x3

_ = x5

(c) Vacuum phase

Xl = Elf

x 2 = xI

x4 = x3

i5 = E3f

x6 = x5

10.6.4 Exit Conditions

Exit Conditions are identical to those of Program i.

10.6.5 Functional Equations

IT I from 5-1
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I°I from 6-5. Note:

table lookups

HM is used for atmosphere

QO

g

_f

Tower setting

tan-IIy(xJ)2-_- (Ymf)2 /V1

tan -± (xZ/Ym f)

7-14
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GLOSSARY

The section listing below gives sections in which the symbols are defined

in context.

For explanation of vector subscript_ng and superscripting conventions,

see Section 9.

Symbol Section

A 4,6

AE

a 7,8

aij 9

[aiJ 4

[aij] 9

bi 4-7

b- superscript

b- subscript 5

 bij] 8

[bij] 9

C 4,7

G 8

Definition

Aerodynamic Force

Rocket motor exit area

Semi-major axis of the earth

Element in ith row and jth column of [ai_

Direction cosine matrix transforming from

launcher system to body system

General direction cosine matrix

Body coordinate system axes

Indicates vector resolved in body system

Rocket motor burnout •

Matrix of transformation from -ei system

to t i system

General direction cosine matrix

Centrifugal force vector

Coriolis force vector
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Symbol

C

ci

c- superscript

[cij]

CD

CL

CLa

CLa F

c.g.

c.p.

c .p .f.

.-%

D

d 2

[dij]

E

-&

F

fi( )

fi

f- supers cript

G

go

gi

g-superscript

Section

8

8

6

6

6

6

4-7

6

6

6

6

9

4,7

4

2

4,8

4,8

4,7

4

4,8

Definition

Center of the earth

Axes of earth fixed coordinate system with

origin at the earth's center

Indicates vector resolved in ci system

..... _ _+_ _n_ne matrix

Drag coefficient

Lift coefficient

Slope of C L vs. a , at a = 0

Slope of C L for fins alone vs. a, at _ = 0

Center of gravity of rocket

Center of pressure of rocket

Center of pressure of fins

Drag force vector

Reference area for aerodynamic coefficients

General direction cosine matrix

Net acceleration vector caused by gravita-

tion and rotation of the earth

Force vector

Function of variables in parentheses

Axes of system aligned with firing azimuth

Vector resolved in fi system

Gravitational acceleration vector

Magnitude of G at a reference point

Ground fixed coordinate axes

Indicates vector resolved in gi system
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Symbol

HL

HL

@

HT

h

1,12

I- subscript

I- supers cript

J

Xo o

13

k

kG i

k.

1

L

L !

L

Section

8

8

8

8

8

6,8

4

5

4

5

2

7

8

8

8

Definition

Geodetic height of launcher

Vector from surface of reference ellipsoid

to L, in plunb line direction

Geodetic height of rocket

Vector from surface of reference ellipsoid

to rocket, in plumb line direction

Geodetic height of target

Height of rocket

Transverse moment of inertia of rocket

Rocket motor impulse

Vector resol_ed in inertial system

Total impulse of rocket motor

Increments of variable in Runge-Kutta

integration

Constant of proportionality between thrust

and mass flow rate

i = i, ., 6 constants of gravitational

potential

i = i, 2, 3 translation constants for

transforming from _i to ti system

As a point: Launcher location

As a subscript: Pertaining to the launcher

Foot of perpendicular from L to reference

ellipsoid

Geodetic latitude
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Symbol

Lsubscript

L

L T

_- subscript

-supers cript

R-subscript

M

M

M

MT

_j

ML,D

MpM

77l

n

o- sub sc ript

P

Section

8

6

6

6

8

8

4,8

8

8

8

4

4

5

5

6

6

6

6

2

8.4

Definition

Geodetic latitude of point indicated by

subscript

Lift force vector

Lift force caused by fin malalignment

Lift force ca_ed by tail surface alone

Geocentric latitude

Geocentric latitude of point indicated by

subscript

Axes of launcher based system

Vector resolved in _i system

Vector directed to launcher

As a point: Location of rocket

As a subscript: Pertaining to rocket location

Mass of rocket

Moment vector

Moment caused by thrust malalignment

Moment caused by jet damping

Moment caused by lift and drag

Moment caused by fin malalignment

Moment caused by aerodynamic damping

Mach number

Number of first order differential equations

in set

Initial condition

A point on the surface of the reference

ellipsoid
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Symbol

P- subscript

P

PA

]D_

P- sub script

q

R

R

R

superscript
subscript

R o

.-%

Rp

-.%

RpF

R T

r i

r-subscript

si

t

--%

T

Section

6

5,6

5,6

i0

6

All

All

All

All

4

.

6

5

All

9

I0

9

All

4,5

Definition

Pertaining to P, above

Atmo spheric p re ssure

Ambient atmospheric pressure: pressure

at specifie,i location

Sea level atmospheric pressure

Condition at peak of trajectory

Dynamic pressure

Position vector

First derivative of R

Second derivative of R

Vector from origin of system indicated

by superscript to point indicated by subscript

Distance from center of earth to point chosen

for reference gravitational magnitude go

Vector from c.g. to c.p.

Vector from c.g. to e.p.f.

Vector from c.g. to center motor exit plane

Elementary rotations about the "1" 3 "2" and

"3" axes

Axes of a general coordinate system

Re-entry condition

Axes of a general coordinate system

Time

Thrust, vector
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Symbol

T

T !

t i

V

..%

VE

v- subscript

W

w i

xi,x j

xSUperscript 1

sub script

ysuperscript
subscript

zSUperscript Jsubscript

XT

XN

aF

a T

Section

8

8

8

9

4

5

i0

6

6

2

All

Definition

As a point: Target location

As a subscript: Pertaining to target location

Foot of pe_oendicular from target location to

reference ellipsoid

Axes of ÷ .....+ h_ _vstem

General vector

Velocity of rocket as defined in 4.3

Velocity of rocket exhaust with respect to

rocket

Conditions at entry to vacuum conditions

Wind velocity

Axes of wind oriented system

General variable of differential equations

Coordinates of point designated by subscript

in system designated by superscript: com-

=_supers cript
ponents of _subscript

Distance from c.g. to center of pressure

of tail

Distance from c.g. to center of pressure of

nose

Angle of attack

Angle of attack of fins

Angle of attack of tail section

Pitch angle
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Symbol

¥

At

&A

A@

8_

@

A

X

X
i

-subscript

P

Section

6

6

2

8

i0

6

8

8

5

lO

8

All

All

8

8

7

5,6

Definition

Pitch rate

Ratio of specific heats for the atmosphere

Time interval for numerical integration

Difference between longitude of launcher

and rocket

Increment in launcher setting from one

trajectory to the next

Fin malalignment angle

Difference between geodetic and geocentric

latitudes of a point on the surface of the

ellipsoid

Difference between the geocentric latitudes

of two points

Thrust malalignment angle

Angle between velocity vector and the _3

(vertical) axis

Longitude

Summation

Summation over the index i

Vector from center of earth to point indih

cated by subscript

Radius of earth

Gravitational potential function

Roll angle of rocket
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Symbol

F,., I

L"" iJ

Section

2

i0

All

All

A]]

Definition

General function

Heading angle of rocket in fi system

_ugular rotation vector

Components of

Matrix such that the element in the jth

row and kth column is w i _ ijk, where

ijk is the generalized Kroneker delta
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REQUIRED INPUT PARAMETERS

Launch Point Parameters

S_mbol Units

A @ Degrees

@L

FAZ Degrees

LDLA Degrees

LLO Degrees

LDH Feet

ZL Feet

ZT

go

TDLA

TLO

TDH

Feet

Feet/sec. 2

Degrees

Degrees

Feet

Description

Range and increment of launch

angle, measured from vertical

Firing azimuth, measured posi-
tive clockwise from north

Launch point geodetic latitude,

measured positive north from

equator

Launch point longitude, mea-

sured positive west from

Greenwich

Launch point geodetic heighth
above sea level

Launch point heighth above

sea level

Launcher length

Acceleration due to gravity

Target geodetic latitude

Target longitude

Target geodetic height

Program

1 2 3 4 5

x x x x x

x

x

x

x

x x x x

X X X X X

X X X X X

X

X

X
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Initial Position and Velocity Parameters

Symbo______l Units

T o Seconds

X Feet

Y Feet

Z Feet

U

W

i

£

V o

Phi

Feet/sec.

Feet/sec.

Descrip-;ion

Initial time

InilJn,l rnnge _'rom launch

point, measure<_ along fir-

ing azimuth li_e

Initial cross :'ange

Initial altituCe, above

launch point

Feet/sec.

Initial velocity component

along longitudinal axis of

rocket

Feet/see.

Initial velocity component

normal to longitudinal axis

of rocket

Feet/see.

Degrees

Initial horizontal velocity

component

Initial vertical velocity

component

Initial velocity

Initial heading; measured

positive clockwise from FAZ

line

Degrees/sec. Initial pitch rate, measured

positive from vertical

Degrees

@ Degrees

Initial pitch angle, measured

from vertical

Initial flight path angle_

measured positive from verti-

cal

Program

12345

X X X X X

X X X X X

X

X X X X X

X X X

X X X

X X

X X

X

X

X X X

X X X

X X X

Stage (Phase) Parameters

TS Seconds

TI Seconds

Time of separation

Time of ignition

X X X X X

X X X X X
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Symbol Units

TB0 Seconds

CT Feet

CPD Feet

CPF Feet

N/CLSF*

KR** Radians/ft.

AE (Inch) 2

PL Pounds

PL Sep. Seconds

Ref. Area (Inches) 2

Description

Time of burnout

Center of thrust, measured
from base of rocket to throat

of nozzle

D&mp_ng center of pressure,
measured from base of rocket

Fin center of pressure, mea-

sured from base of rocket

Fin lift factor (% of total

lift)

Roll rate = (KR) x velocity

Exit area

Payload weight

Time of payload separation

Reference area for aerodynamic

coefficients

Program

i 2 3 4 5

X X X X X

X X X

X X X

X

X

X

X X X X X

X X X X X

X X X X X

Table Parameters for Each Stage or Flight Phase

Thrust vs. Time Pounds

Weight vs. Time Pounds

Drag Coefficient

vs. Mach No.

Lift Coefficient (Radian) -1

Slope vs. Mach

No.

Center of Pres-

sure vs. Mach No.

Moment of Iner-

tia vs. Time

Feet

Slug- ft. 2

Center of Gray- Feet

ity vs. Time

X X X X X

X X X X X

X X X X X

X X X

X X X

X X X

X X X

* N/CLSF can be substituted by a table of Fin Lift Coefficient Slope vs. Math No.

**KR can be substituted by a table of Roll Rate vs. Time.
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OPERATIONALFLOWI:'ROCEDIREFOR

COI'iPUTERSII#JL]TiON '_ASKS

'REQUEST
! FROM

I CLIENT

I

I PP_EPAREDRAFTI
----_OF SI_#JLATION_---_

t
MODIFY

SIMUL_TION

PLAN

LIST /_i]

P#QRA,._. _ IS

!_JEED__D

I
PI a,CE _,J

IN CATALOG

\'_,:-TRRSON HAND? ___

]_:C':;'N Pfdt/'d.IETERS

I FROM CLIENT

¢
COMPILE C0_[PLETE PL#_N FOR SI_.MLATION

WITH PARA_4ETER CHA_[GES ON EACH & LIST

OF ALL PARA_METERS TO BE USED]

SEND TO CLIENT FOR CONCUREI,:CE

DOES 'CL!ENT ______S

AGREE?

I

¢
I PREP.Q_tE INITIAL

i COZ_-DITiON SET-UP
I
i SHEETS

I

>

D

T/_T" r'/"rThSP_C-_I_D

TABLES

COMPUTE

EDIT_

COFS°ILE

& ANALYZE DAT]

I
COi',2iI_ CA]tD DECKS OF I

IN!TiAL CO_'_!TIONS AND I

I

Tf_LEo FOR P_D I

SEQUENCE OF CO._UTER RU_
I

I

DOES DATA SATISFY

CLIENTS REQUEST?

N0

\/

PREPARE ]

REPORT

ON TASK
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